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ABSTRACT  

Grid integration of photo voltaic (PV)/Battery hybrid energy conversion system with (i) multi-functional features 

of micro grid-side bidirectional voltage source converter (µGVSC) (ii) tight voltage regulation capability of battery 

converter (iii) MPPT tracking performance of high gain integrated cascaded boost (HGICB) dc-dc Converter with 

quadratic gain and less current ripple are presented in this paper. The PV side HGICB Converter is controlled by                          

P&O MPPT algorithm to extract the maximum power from the variable solar irradiation. This paper proposes a modified 

Instantaneous symmetrical components theory to the µG-VSC in micro-grid applications with following intelligent 

functionalities (a) to feed the generated active power in proportional to irradiation levels into the grid (b) compensation of 

the reactive power, (c) load balancing and (d) mitigation of current harmonics generated by non-linear loads, if any,               

at the point of common coupling (PCC), thus enabling the grid to supply only sinusoidal current at unity power factor. 

The battery energy storage system (BESS) is regulated to balance the power between PV generation and utility 

grid. A new control algorithm is also proposed in this paper for the battery converter with tight DC link voltage regulation 

capability. The dynamic performance of battery converter is investigated and compared with conventional average current 

mode control (ACMC). A model of a hybrid PV Energy Conversion System is developed and simulated in 

MATLAB/SIMULINK environment. The effectiveness of the proposed control strategies for HGICB converter and                   

µG-VSC with battery energy conversion system are validated through extensive simulation studies. 

KEYWORDS:  PV Energy Conversion System, High Gain Integrated Cascaded Boost DC-DC Converter, Instantaneous 

Symmetrical Components Theory, Battery Energy Storage System 

1 INTRODUCTION 

Among various renewable energy resources, PV and wind power are most rapidly growing renewable energy 

sources [1]. The PV source is a nonlinear energy source and direct connection of load will not give optimum utilization of 

the PV system. In order to utilize the PV source optimally, it is necessary to provide an intermediate electronic controller in 

between source and load under all operating conditions [2]. Using this electronic controller it is possible to operate the              

PV source at maximum power point (MPP), thus improving the energy efficiency of the PV system.                                         

Many control algorithms have been reported in the literature to track maximum power from the PV arrays, such as 

incremental conductance (INC), constant voltage (CV), and perturbation and observation (P&O). The two algorithms often 
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used to achieve maximum power point tracking are the P&O and INC methods [2], [3]. Many DC-DC converter topologies 

are available to track the MPP in PV generating system. Cascade connection of Conventional converters provides wider 

conversion ratios [4]. One of the major advantages of these converters is a high gain and low current ripple. 

However, this configuration has a drawback that the total efficiency may become low if the number of stages is 

high, owing to power losses in the switching devices [4]. A quadratic converter configuration is also available that uses 

single switch and achieves quadratic gain [4]. An interesting attractive converter topology is a high gain integrated 

cascaded boost converter having n-converters connected in cascade using a single active switch. 

The instability caused by the cascade structure is avoided, when compared with the conventional cascade boost 

converter [4]. This class of converters can be used only when the required number of stages is not very large,                             

else the efficiency will be reduced. However, this class of converters for PV applications is not reported in the technical 

literature. Micro-grid power converters can be classified into (i) grid feeding,(ii) grid-supporting, and (iii) grid-forming 

power Converters [5]. There are many control schemes reported in the literature such as synchronous reference theory, 

power balance theory, and direct current vector control [6], [7], for control of µG-VSC in micro grid application.                      

This algorithm requires complex coordinate transformations, which is cumbersome. 

Compared to the control strategies mentioned above, the Instantaneous symmetrical component based control 

proposed in this paper for micro-grid applications is simple in formulation, avoids interpretation of instantaneous reactive 

power and needs no complex transformations. This paper is structured as follows: In section 2, system description and 

modeling of various components are presented. The proposed control strategies for HGICB DC-DC Converter,                      

Battery Converter and µG-VSC are discussed in section 3. The simulation results are presented in section 4.                              

With Concluding remarks in section 5. 

2 SYSTEM DESCRIPTIONS 

The envisaged system consists of a PV/Battery hybrid System with the main grid connecting to non-linear and 

Unbalanced loads at the PCC as shown in the Figure 1. The photovoltaic system is modeled as nonlinear voltage sources 

[8]. The PV array is connected to HGICB dc-dc converter and bidirectional battery converters are shown in Figure 1, 

which are coupled at the dc side of a µG-VSC. The HGICB dc - dc converter is connected to the PV array works as            

MPPT Controller and battery converter is used to regulate the power flow between dc and ac side of the system. 

 

Figure 1: Hybrid Energy Conversion System under Consideration 
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Figure 2: A New Modified-ACMC Control Strategy for Battery Converter 

3 MODELING AND CONTROL 

The MPPT algorithm for HGICB Converter, control approaches for battery converter and µG-VSC are discussed 

in the following sections. 

3.1 PV Array Model 

The mathematical model of PV system referred in [8] is used in this work. 

3.2 Battery Converter Modeling 

The battery converter goes through two topological stages in each switching period, its power stage dynamics can 

be described by a set of state equations. The average state space model of the converter can therefore be given as: 
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The averaged model is nonlinear and time-invariant because of the duty cycle, d(t). This model is finally 

linearized about the operating point to obtain a small-signal model is shown in Figure 4. The following are the important 

transfer functions used to design the compensators and to analyze the system behavior under small signal conditions                    

(i) the duty-cycle-to output transfer function Gcv(s), carries the information needed to determine the type of the                     

voltage feedback compensation,(ii) the duty-cycle-to-inductor current transfer function Gci(s), is needed to determine the 

current controller structure. 

 

Figure 3: Flow Chart of Power Flow in Hybrid System 
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4 PROPOSED CONTROL FOR BATTERY CONVERTER 

If AC side of µG-VSC has constant power appliances (CPAs), in the small-signal sense, CPAs nature leads to 

negative incremental input-conductance which causes destabilization of the dc-link voltage [10]. On the micro grid 

generation side, the inherent negative admittance dynamics of their controlled conversion stages challenges the                  

dc-link voltage control and stability. This effect is more with reduced dc-link capacitance. Therefore, in both cases,         

fast and effective control and stabilization of the dc-link voltage is very crucial issue. To address this problem, many 

methods are reported in the literature like (i) by large DC link capacitance (ii) by adding passive resistances at various 

positions in DC LC filter (iii) by loop cancellation methods [9], [10]. In this paper, a new modified-ACMC (MACMC) 

control algorithm is proposed for effective control and stabilization of battery converter by introducing virtual resistance 

(VR) in the (i) outer loop called outer loop virtual resistance control (OLVRC) (ii) intermediate loop called inner loop 

virtual resistance control (ILVRC) as shown in Figure 2. The proposed virtual resistance based dynamic damping methods 

aim at injecting a damping signal that compensate for negative conductance caused by CPAs without any power loss. 

4.1 Design Steps for Compensators of BESS 

The effectiveness of proposed VRCs control algorithm is investigated and compared with the use of traditional 

ACMC [11]. The flowchart for modes of operation of battery converter in grid-feeding mode is shown in Figure 3.                      

The design guidelines for inner and outer loop compensators of ACMC are given below. The inner loop (current) gain can 

be written as: 

��(�)�	���( )!����( )"#                                                                                                                                            (2) 

The outer loop (voltage) gain can be written as: 

��(�)�	���( )���( )$1 + � ��	( )'"#                                                                                                                     (3) 

And the overall loop gain therefore can be written as, 

T1(s)= Ts+Tv 

 

Figure 4: Inner and Outer Loops of Battery Converter with MACMC 

Voltage Loop Design Steps: 

• Place one zero as high as possible, yet not exceeding resonating frequency of the converter. 

• Place one pole at frequency of output capacitor ESR to cancel the effects of output capacitor ESR. 

• Adjust, gain of compensator to trade-off stability margins and closed-loop performance. 
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• Another pole should be place at origin to boost the dc and low frequency gain of the voltage loop. 

Similar steps mentioned above are followed to design current loop and for design of MACMC loops.                   

Following the design procedure given above, the inner current and outer voltage loop compensators are designed to 

regulate the DC link Voltage to 920 V. 

5 GENERATION OF REFERENCE CURRENTS FOR µG-VSC 

The main aim of the µG-VSC control is to cancel the effects of unbalanced and harmonic components of the local 

load, while supplying pre-specified amount of real and reactive powers to the load. Upon successfully meeting this 

objective, the grid current ig will then be balanced and so will be the PCC voltage vp provided, grid voltage vg is balanced. 

Let us denote the three phases by the subscripts a, b and c. Since ig is balanced, we can write: 

iga + igb + igc = 0.                                                                                                                                                        (5) 

From the Figure 1, Kirch offs current law (KCL) at PCC gives  

ig,abc + iinv,abc = iL,abc.                                                                                                                                                  (6) 

Therefore, from (5) and (6), we can write as: 

iinv,a + iinv,b + iinv,c = iL,a + iL,b + iL,c.                                                                                                                          (7) 

Since ig is balanced due to the action of the compensator, the voltage vp will also become balanced.                            

Hence, the instantaneous real powers Pg will be equal to its average component. Therefore, we can write 

Pg = vpa iga + vpb igb + vpc igc                                                                                                                                       (8) 

Table 1: System Parameters 

 

 Solving above equations, the µG-VSC reference currents are obtained as follows: 

            (9) 

where, 

 



178                                                                                                                                              P. Mohan, G. S. Suganya & T. Sivanandhan 
 

 
Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us 

 

and , and by substituting  into the equation (9), the modified G-VSC reference 

current equations in terms of active and reactive components are obtained as: 

          (10) 

In equations (9) and (10), Pµs, Plavg, and Ql are the available micro source power, average load power,                           

and load reactive power respectively. Ploss denotes the switching losses and ohmic losses in actual compensator.                          

The term Plavg is obtained using a moving average filter of one cycle window of time T in seconds. 

6 RESULTS AND DISCUSSIONS 

The proposed control strategies for PV hybrid generating system is developed and simulated using 

Matlab/SIMULINK under different solar isolation levels. In order to capture the transient response of the proposed control 

system, PV isolation is assumed to increase from 200 to 1000 W/m2 at 0.3 s, and decreases from 1000 to 200 W/m2 at 0.5 s. 

This abrupt increase or decrease is assumed in this work in order to test the robustness of the proposed control algorithm. 

As a result, the inductor current of the HGICB converter is varied to track the maximum power accordingly and the                

power flow between the µG-VSC, grid and load is also varied under above the operating conditions. 

 

Figure 5: Simulation Results: MPPT Tracking Performance of HGICB Converter  
(a) PV Characteristic at G=200 W/m2 (b) PV Characteristic at G=1000 W/m2 

(c) Insolation Variations (d) Maximum Power (e) PV Current (f) PV Voltage 
 

Table 2: Maximum Power Tracking Performance 
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5.1 MPPT Tracking Performance of HGICB Converter 

The dynamic performance of HGICB converter with P&O MPPT algorithm at two different isolation levels are 

shown in Figure 5. A variable PV voltage and current in proportion to isolation levels are applied to HGICB converter and 

as a result, the duty cycle is calculated using the MPPT algorithm. The PV characteristics at two isolation levels are              

shown in Figure 5(a)-(b). From Figure 5 (a), the maximum power, current and voltage are 2.6kW, 14A and                          

190V respectively and these values are tracked by HGICB converter which are shown in Figure 5 (d)-(f). Tracked values 

of PV power, voltage and currents are given in Table 2 for the above operating isolation levels. From these results it can be 

concluded that, HGICB converter is tracking maximum power closely at all operating conditions. 

5.2 Performance of ΜG-VSC with Different Isolation Levels 

The µG-VSC is actively controlled to inject the generated active power as well as to compensate the harmonic and 

reactive power demanded by the unbalanced and non-linear load at PCC, such that the current drawn from grid is purely 

sinusoidal at UPF. The dynamic compensation performance of µG-VSC using proposed control algorithm with isolation 

change and non linear unbalanced load currents are shown in the Figure 6 (a)-(d) along with grid side currents. 

When isolation = 200 W/m2, the maximum power extracted from PV arrays is 2.5kW and the total dc load power 

(4.5 kW) is partly supplied by PV arrays and the remaining dc load power (2 kW) is drawn from grid through the 

bidirectional µG-VSC. Here observed that the power flows from ac side to dc link as shown in the Figure 7.                         

When isolation G = 1000 W/m2, the maximum power available from PV arrays is 12.5kW, part of this power (4.5 kW)            

is supplied to dc load and remaining power (8 kW) is supplied to the ac load through bidirectional µG-VSC.                          

In this case, the power flows from dc link to ac side. This shows the bidirectional power flow capability of µG-VSC.           

These dynamics of power flows can be seen from Figure 7. The corresponding variations in the grid current against                 

grid voltage with upf are shown in the Figure 8. 

 

Figure 6: Simulation Results Using Proposed Control Approach for Micro-Grid Side VSC: 
(a) Insolation Changes (b) Load Currents (c) Grid Currents (d) µG-VSC Currents 

 
µG-VSC using proposed control algorithm with isolation change and non linear unbalanced load currents are 

shown in the Figure 6 (a)-(d) along with grid side currents. When isolation = 200 W/m2, the maximum power extracted 

from PV arrays is 2.5kW and the total dc load power (4.5 kW) is partly supplied by PV arrays and the remaining                      
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dc load power (2 kW) is drawn from grid through the bidirectional µG-VSC. Here observed that the power flows from             

ac side to dc link as shown in the Figure 7. When isolation G = 1000 W/m2, the maximum power available from PV arrays 

is 12.5kW, part of this power (4.5 kW) is supplied to dc load and remaining power (8 kW) is supplied to the ac load 

through bidirectional µG-VSC. In this case, the power flows from dc link to ac side. This shows the bidirectional power 

flow capability of µG-VSC. These dynamics of power flows can be seen from Figure 7. The corresponding variations in 

the grid current against grid voltage with upf are shown in the Figure 8, along with dc link voltage variations. 

Table 3 

 

 

Figure 7: Real and Reactive Power Flow Waveforms of PV Hybrid Generation System 

 

Figure 8: Simulation Results: Performance of Proposed Control Approach 
(a) Grid Voltages and Currents (b) DC Link Voltage Dynamics with Different Insolation 

 
5.2 Performance of Battery Converter Control Algorithms with DC Load Variations and Isolation Changes 

The dynamic performance of ACMC and MACMC proposed in this paper are investigated through                         

(i) DC load variations (ii) isolation changes. At t=0.35 s, the dc load is changed from 4.5 kW to 5.5 kW. Corresponding to 

these variations, the DC link voltage regulation capability of these two control algorithms are shown in the Figure 9.               

From Figure 9, it can be concluded t hat for dc load changes, the modified-ACMC gives better DC Link voltage regulation 

capability when compared to ACMC. The battery performance with reference to above changes are captured and are 

shown in the Figure 10. 
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Figure 9: DC Link Voltage Dynamic Using ACMC and MACMC Control Algorithms 

 

Figure 10: Battery Performance Using Proposed Control Approach to Bidirectional Battery  
Converter (a) Battery Voltage (b) State of Charge (SOC) (c) Battery Current 

 
6 CONCLUSIONS 

The performance of PV/Battery hybrid energy conversion system has been demonstrated with the application of 

modified Instantaneous symmetrical components theory to µG-VSC proposed in this paper, an efficient control strategy is 

also proposed for battery converter to regulate the dc bus voltage tightly, under varying solar isolation and dc load 

conditions. HGICB converter topology is used to track the MPPT with high gain and less current ripple.                                       

The µG-VSC is able to inject the generated power into the grid along with harmonic and reactive power compensation for 

unbalanced non-linear load at the PCC simultaneously. The system works satisfactorily under dynamic conditions.                    

The simulation results under a unbalanced non-linear load with current THD of 12% confirm that the µG VSC can 

effectively inject the generated active power along with power quality improvement features and thus, it maintains a 

sinusoidal and UPF current at the grid side with THD of 2.06% (Figure 11). 

 

Figure 11: Simulation Results: Performance of Proposed Control Approach  
(a) Grid Currents (b) Harmonic Spectrum 
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